Copied to
clipboard

G = C24.17D4order 128 = 27

17th non-split extension by C24 of D4 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.17D4, C23.3Q16, C4⋊C4.17D4, C23⋊C8.7C2, (C2×Q8).19D4, (C22×C4).53D4, C23.531(C2×D4), C22⋊C8.7C22, C2.10(D44D4), C232Q8.3C2, C22.13(C2×Q16), C23.31D49C2, C23.48D41C2, (C22×C4).20C23, C2.8(C22⋊Q16), C22⋊Q8.13C22, C22.141C22≀C2, C23.4Q8.2C2, C2.11(C23.7D4), C22.33(C8.C22), C2.C42.26C22, (C2×C4).209(C2×D4), (C2×C4⋊C4).24C22, (C2×C22⋊C4).100C22, SmallGroup(128,346)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — C24.17D4
C1C2C22C23C22×C4C2×C22⋊C4C232Q8 — C24.17D4
C1C22C22×C4 — C24.17D4
C1C22C22×C4 — C24.17D4
C1C2C22C22×C4 — C24.17D4

Generators and relations for C24.17D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=c, f2=dc=cd, eae-1=faf-1=ab=ba, ac=ca, ad=da, bc=cb, ebe-1=bd=db, bf=fb, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde3 >

Subgroups: 292 in 118 conjugacy classes, 34 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C2.C42, C22⋊C8, Q8⋊C4, C2.D8, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22⋊Q8, C23⋊C8, C23.31D4, C23.4Q8, C23.48D4, C232Q8, C24.17D4
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C22≀C2, C2×Q16, C8.C22, C22⋊Q16, D44D4, C23.7D4, C24.17D4

Character table of C24.17D4

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K8A8B8C8D
 size 11112244448888888888888
ρ111111111111111111111111    trivial
ρ2111111-1-111-11-11-11-11-1-11-11    linear of order 2
ρ311111111111-1-1-1-11111-1-1-1-1    linear of order 2
ρ4111111-1-111-1-11-111-11-11-11-1    linear of order 2
ρ51111111111-11111-11-1-1-1-1-1-1    linear of order 2
ρ6111111-1-11111-11-1-1-1-111-11-1    linear of order 2
ρ71111111111-1-1-1-1-1-11-1-11111    linear of order 2
ρ8111111-1-1111-11-11-1-1-11-11-11    linear of order 2
ρ92222-2-200-2200-20200000000    orthogonal lifted from D4
ρ1022222222-2-2000000-2000000    orthogonal lifted from D4
ρ112222-2-2002-2020-2000000000    orthogonal lifted from D4
ρ122222-2-2002-20-202000000000    orthogonal lifted from D4
ρ13222222-2-2-2-20000002000000    orthogonal lifted from D4
ρ142222-2-200-220020-200000000    orthogonal lifted from D4
ρ1522-2-2-22-22000000000002-2-22    symplectic lifted from Q16, Schur index 2
ρ1622-2-2-222-20000000000022-2-2    symplectic lifted from Q16, Schur index 2
ρ1722-2-2-22-2200000000000-222-2    symplectic lifted from Q16, Schur index 2
ρ1822-2-2-222-200000000000-2-222    symplectic lifted from Q16, Schur index 2
ρ194-4-4400000020000000-20000    orthogonal lifted from D44D4
ρ204-4-44000000-2000000020000    orthogonal lifted from D44D4
ρ2144-4-44-400000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ224-44-4000000000002i0-2i00000    complex lifted from C23.7D4
ρ234-44-400000000000-2i02i00000    complex lifted from C23.7D4

Smallest permutation representation of C24.17D4
On 32 points
Generators in S32
(2 6)(3 27)(4 32)(7 31)(8 28)(9 20)(10 17)(11 15)(13 24)(14 21)(18 22)(26 30)
(1 5)(2 30)(3 7)(4 32)(6 26)(8 28)(9 13)(10 21)(11 15)(12 23)(14 17)(16 19)(18 22)(20 24)(25 29)(27 31)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 11 29 22)(2 17 30 14)(3 9 31 20)(4 23 32 12)(5 15 25 18)(6 21 26 10)(7 13 27 24)(8 19 28 16)

G:=sub<Sym(32)| (2,6)(3,27)(4,32)(7,31)(8,28)(9,20)(10,17)(11,15)(13,24)(14,21)(18,22)(26,30), (1,5)(2,30)(3,7)(4,32)(6,26)(8,28)(9,13)(10,21)(11,15)(12,23)(14,17)(16,19)(18,22)(20,24)(25,29)(27,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,29,22)(2,17,30,14)(3,9,31,20)(4,23,32,12)(5,15,25,18)(6,21,26,10)(7,13,27,24)(8,19,28,16)>;

G:=Group( (2,6)(3,27)(4,32)(7,31)(8,28)(9,20)(10,17)(11,15)(13,24)(14,21)(18,22)(26,30), (1,5)(2,30)(3,7)(4,32)(6,26)(8,28)(9,13)(10,21)(11,15)(12,23)(14,17)(16,19)(18,22)(20,24)(25,29)(27,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,29,22)(2,17,30,14)(3,9,31,20)(4,23,32,12)(5,15,25,18)(6,21,26,10)(7,13,27,24)(8,19,28,16) );

G=PermutationGroup([[(2,6),(3,27),(4,32),(7,31),(8,28),(9,20),(10,17),(11,15),(13,24),(14,21),(18,22),(26,30)], [(1,5),(2,30),(3,7),(4,32),(6,26),(8,28),(9,13),(10,21),(11,15),(12,23),(14,17),(16,19),(18,22),(20,24),(25,29),(27,31)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,11,29,22),(2,17,30,14),(3,9,31,20),(4,23,32,12),(5,15,25,18),(6,21,26,10),(7,13,27,24),(8,19,28,16)]])

Matrix representation of C24.17D4 in GL6(𝔽17)

100000
010000
001000
0001600
000010
0000016
,
100000
010000
001000
000100
0000160
0000016
,
1600000
0160000
001000
000100
000010
000001
,
100000
010000
0016000
0001600
0000160
0000016
,
6110000
300000
0000013
0000130
0013000
0001300
,
1070000
570000
0013000
0001300
0000013
0000130

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[6,3,0,0,0,0,11,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,13,0,0,0,0,13,0,0,0],[10,5,0,0,0,0,7,7,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,0,13,0,0,0,0,13,0] >;

C24.17D4 in GAP, Magma, Sage, TeX

C_2^4._{17}D_4
% in TeX

G:=Group("C2^4.17D4");
// GroupNames label

G:=SmallGroup(128,346);
// by ID

G=gap.SmallGroup(128,346);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,672,141,232,422,1123,570,521,136,1411]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=c,f^2=d*c=c*d,e*a*e^-1=f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^3>;
// generators/relations

Export

Character table of C24.17D4 in TeX

׿
×
𝔽